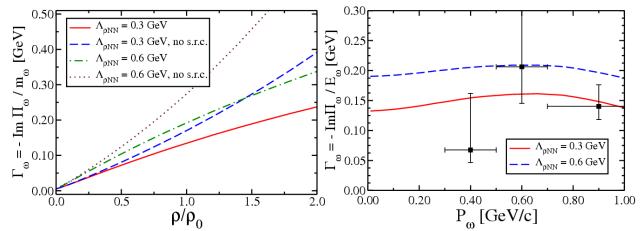
The $\pi\rho$ cloud contribution to the ω width in nuclear matter


D. Cabrera and R. Rapp

Medium modifications of hadrons at finite temperature and density are key to the understanding of the phase structure of QCD matter. Dilepton measurements in heavy-ion collisions have established that the ρ meson undergoes a strong broadening that ultimately melts its resonance structure close to the QCD phase transition temperature, as predicted by many-body theory in hot/dense hadronic matter [1]. For the ω meson, indirect measurements of its absorptive width in photo-induced production experiments off nuclei also indicate a large broadening in nuclear matter, by about 150 MeV or so over its vacuum value of only ~8 MeV [2,3]. This large effect has been difficult to understand theoretically, especially when working to linear order in density using the so-called T- ρ approximation.

In the present work [4], we have evaluated the ω width in nuclear matter by calculating the modifications to its selfenergy due to in-medium decays into a pion and ρ -meson, schematically given by

$$\Pi_{\omega} = \int \mathbf{v}_{\pi\rho\omega} \, \mathbf{D}_{\rho} \, \mathbf{D}_{\pi} \, \mathbf{v}_{\pi\rho\omega} \, ,$$

where $v_{\pi\rho\omega}$ is the $\pi\rho\omega$ vertex function. The key point here is the use of in-medium π and ρ propagators, $D_{\pi,\rho}$, taken from our previous work on in-medium ρ -mesons [5]. It turns out that the resulting ω width in nuclear matter reaches values of about 150-200 MeV at nuclear saturation density, see left panel of Fig. 1. These values, along with the 3-momentum dependence displayed in the right panel of Fig. 1, are in approximate agreement with the experimentally extracted values. The largest theoretical uncertainty is

FIG. 1. The on-shell width of the $\omega(782)$ meson in cold nuclear matter as a function of nuclear density at vanishing 3-momentum (left), and as a function of 3-momentum at nuclear saturation density, $\rho_0=0.16$ fm⁻³ (right). The various curves illustrate the uncertainty due to different parameters in the ρNN^{-1} selfenergy. The experimental data in the left panel are extracted from absorption measurements of w photoproduction off nuclei [2]

associated with the thus far not well constrained parameters of the ρNN interaction vertex, which correspond to t-channel ρ exchange processes in $\omega N \rightarrow \pi N$ scattering. The resulting large ω width in

nuclear matter based on existing in-medium π and ρ properties is encouraging and further corroborates the quantum-many body approach as a suitable tool to evaluate hadron properties in medium.

- [1] R. Rapp, J. Wambach and H. van Hees, in *Relativistic Heavy-Ion Physis (R. Stock, ed.)*, Landolt-Börnstein (Springer), New Series, vol. I/23A (2010) 4-1; e-print arXiv:0901.3289 [hep-ph].
- [2] M. Kotulla et al. [CBELSA/TAPS Collaboration], Phys. Rev. Lett. 100, 192302 (2008).
- [3] M.H. Wood et al. [CLAS Collaboration], Phys. Rev. Lett. 105, 112301 (2010).
- [4] D. Cabrera and R. Rapp, Phys. Lett. B 729, 67 (2014).
- [5] R. Rapp and J. Wambach, Eur. Phys. J. A 6, 415 (1999).